User Positioning in mmW 5G Networks using Beam-RSRP Measurements and Kalman Filtering
نویسندگان
چکیده
In this paper, we exploit the 3D-beamforming features of multiantenna equipment employed in fifth generation (5G) networks, operating in the millimeter wave (mmW) band, for accurate positioning and tracking of users. We consider sequential estimation of users’ positions, and propose a twostage extended Kalman filter (EKF) that is based on reference signal received power (RSRP) measurements. In particular, beamformed downlink (DL) reference signals (RSs) are transmitted by multiple base stations (BSs) and measured by user equipments (UEs) employing receive beamforming. The so-obtained beamRSRP (BRSRP) measurements are fed back to the BSs where the corresponding directions of departure (DoDs) are sequentially estimated by a novel EKF. Such angle estimates from multiple BSs are subsequently fused on a central entity into 3D position estimates of UEs by means of an angle-based EKF. The proposed positioning scheme is scalable since the computational burden is shared among different network entities, namely transmission/reception points (TRPs) and 5G-NR Node B (gNB), and may be accomplished with the signalling currently specified for 5G. We assess the performance of the proposed algorithm on a realistic outdoor 5G deployment with a detailed ray tracing propagation model based on the METIS Madrid map. Numerical results with a system operating at 39GHz show that sub-meter 3D positioning accuracy is achievable in future mmW 5G networks.
منابع مشابه
On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR
Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...
متن کاملImprovement of Navigation Accuracy using Tightly Coupled Kalman Filter
In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...
متن کاملImprovement in Differential GPS Accuracy using Kalman Filter
Global Positioning System (GPS) is proven to be an accurate positioning sensor. However, there are several sources of errors such as ionosphere and troposphere effects, satellite time errors, errors of orbit data, receivers errors, and errors resulting from multi-path effect which reduce the accuracy of low-cost GPS receivers. These sources of errors also limit the use of single-frequency GPS r...
متن کاملOn Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)
In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...
متن کاملMachine Learning for Beam Based Mobility Optimization in NR
One option for enabling mobility between 5G nodes is to use a set of area-fixed reference beams in the downlink direction from each node. To save power these reference beams should be turned on only on demand, i.e. only if a mobile needs it. An User Equipment (UE) moving out of a beam’s coverage will require a switch from one beam to another, preferably without having to turn on all possible be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018